Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 2 | 1 |

Tytuł artykułu

A two dimensions modeling of non-collocated piezoelectric patches bonded on thin structure

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The system studied in this paper consists of thin structure with several piezoelectric patches bonded on its surface. The patches are used as actuators and sensors. Based on Kirchhoff-Love hypothesis, linear constitutive relations, plane stress formulation and Hamilton principle, we have developed a 2D model for this system using the finite element method. It is not a standard 2D model, since the calculation is performed on a structure that does not have symmetries that allow such easy assumptions. The originality of the work consists in the use of the concept of neutral plane to model this asymmetric system in 2D. This technique, beside good precision, saves computational time. An experimental device has been also built and tested to validate the model. The structural damping is included in the model to match the damping behavior of the real system. Optimizations of the thickness of piezoelectric patches and materials used in the thin structures are also presented in the paper.

Wydawca

Rocznik

Tom

2

Numer

1

Opis fizyczny

Daty

otrzymano
2014-07-15
zaakceptowano
2014-11-14
online
2014-12-18

Twórcy

autor
  • Laboratoire de Génie Electrique de Paris (LGEP) / SPEE-Labs, CNRS UMR 8507; SUPELEC; Université Pierre et Marie Curie P6; Université Paris-Sud 11; 11 rue Joliot Curie, Plateau de Moulon F91192 Gif sur Yvette CEDEX
autor
  • Laboratoire de Génie Electrique de Paris (LGEP) / SPEE-Labs, CNRS UMR 8507; SUPELEC; Université Pierre et Marie Curie P6; Université Paris-Sud 11; 11 rue Joliot Curie, Plateau de Moulon F91192 Gif sur Yvette CEDEX
autor
  • Laboratoire de Génie Electrique de Paris (LGEP) / SPEE-Labs, CNRS UMR 8507; SUPELEC; Université Pierre et Marie Curie P6; Université Paris-Sud 11; 11 rue Joliot Curie, Plateau de Moulon F91192 Gif sur Yvette CEDEX

Bibliografia

  • [1] Hariri H., Bernard Y., Razek A., Finite element model of a beam structure with piezoelectric, patches using RL shunt circuits, AC2011, 14th International Conference on active systems for dynamicsmarkets, Darmstadt, Germany, 07-08 September 2011,pp.124-131.
  • [2] Yasin M. Y., Ahmad N., Alam M. N., Finite element analysis of actively controlledsmart platewith patched actuators and sensors, Latin American Journal of Solids and Structures, Vol 7, No 3 (2010) 227-247.
  • [3] Sharma A., Kumar R., Vaish R., Chauhan V., Lead-free piezoelectric materials’ performance in structural active vibration control, Journal of IntelligentMaterial Systems and Structures, September 2014 vol. 25 no. 13 1596-1604.
  • [4] Zhang J., He L., Wang E., Active Vibration Control of Piezoelectric Intelligent Structures, Journal of Computers, 03/2010.
  • [5] Rodriguez-Fortun J. M., Orus J., Alfonso J., Gimeno F. B., Castellanos J. A., Mechatronics, IEEE/ASMETransactions on, Volume: 18, Issue: 1 (2013), pp. 221-229.
  • [6] Qu G.M., Li Y.Y., Cheng L., Wang B., Analysis of a piezoelectric composite plate with cracks, Journal of composite structures, vol. 72, n∘1 (2006) 111-118.
  • [7] Yan Y.J., YamL.H., Online detection of crack damage in composite plates using embedded piezoelectric actuators/sensors and wavelet analysis, Journal of Composite Structures, Vol 58, Issue 1 (2002) 29-38.
  • [8] Jinsong Z., Change G., Likun H., Piezoelectric-based Crack Detection Techniques of Concrete Structures: Experimental Study, Journal of Wuhan University of Technology-Mater. Sci. Ed, 04/2012, Volume 27, Number 2, pp. 346-352.
  • [9] Chomette B., Fernandes A., Sinou J.-J., Cracks Detection Using Active Modal Damping and Piezoelectric Components, 2013, Vol.:20 iss:4 pg:619-631.
  • [10] Kim S. B., Sohn H., Instantaneous reference-free crack detection based on polarization characteristics of piezoelectric materials, 2007 Smart Mater. Struct. 16. [WoS]
  • [11] Jeong-Beom I., Fu-Kuo C., Detection and monitoring of hidden fatigue crack growth using a built-in piezoelectric sensor/ actuator network: I. Diagnostics, Smart Materials and Structures, 06/2004, Volume 13, Number 3, pp. 609-620.
  • [12] Cai J., ChenW., YanW., Lim C., Application of EMI Technique for Crack Detection in Continuous Beams Adhesively Bonded with Multiple Piezoelectric Patches, Mechanics of Advanced Materials and Structures, 01/2008, Volume 15, Number 1, pp. 1-11. [WoS]
  • [13] Yu Lingyu, Momeni Sepandarmaz, Godinez Valery, Giurgiutiu Victor, Ziehl Paul, Yu Jianguo, Dual Mode Sensing with Low- Profile Piezoelectric Thin Wafer Sensors for Steel Bridge Crack Detection and Diagnosis, Advances in Civil Engineering, 2012, Volume 2012, pp. 1-10.
  • [14] Sunyoto S., Bernard Y., Razek A., Design and realization of a linear piezoelectric actuator for orthopaedic applications, Journal of Advanced Science, Vol. 18, Issue: 0, 2006, pp. 162- 165.
  • [15] Hernandez C., Bernard Y., Razek A., A global assessment of piezoelectric actuated micro-pumps, European. Physical Journal Applied Physics, Vol. 51, Issue: 2 (2010) 1-8. [WoS]
  • [16] Bernard Y., Razek A., Piezoelectric valve modeling and design, Darmstadt, Germany, 07-08 September 2011, pp.124-131
  • [17] Hariri H., Bernard Y., Razek A., Locomotion principles for piezoelectric miniature robots, Proceedings on actuator 10, Bremen , DE, 14 June 2010, pp. 1015-1020.
  • [18] Bernard Y., Hernandez C., Razek A., Radial travelingwave ultrasonic motor design, Actuator14, Breme, DE, 23 June 2014, pp. 663-666, Proceedings of Actuator14.
  • [19] Tressler James F., Alkoy Sedat, Newnham Robert E., Piezoelectric Sensors and Sensor Materials, Journal of Electroceramics, 12/1998, Volume 2, Number 4, pp. 257-272.
  • [20] Zimmermann T., Neuburger M., Benkart P., Hernandez-Guillen F.J., Pietzka C., Kunze M., Daumiller I., Dadgar A., Krost A., Kohn E., Piezoelectric GaN sensor structures, IEEE Electron Device Letters, 2006, Volume 27, Number 5, pp. 309-312. [Crossref]
  • [21] Terada, Jiro, Vibration piezoelectric acceleration sensor, The Journal of the Acoustical Society of America, 2010, Volume 127, Number 3.
  • [22] Howells Christopher A., Piezoelectric energy harvesting, Energy Conversion and Management, 2009, Volume 50, Number 7, pp. 1847-1850.
  • [23] Qingyuan Zhu, Yingtai Li, Yuanqin He, Mingjie Guan, Snapthrough piezoelectric energy harvesting, Journal of Sound and Vibration, 05/2014, Volume 333, Number 18.
  • [24] Qingyuan Zhu, Yingtai Li, Yuanqin He, Mingjie Guan, Piezoelectric Energy Harvesting in Automobiles, Ferroelectrics, 01/2014, Volume 467, Number 1. [WoS]
  • [25] Hobbs William B., Hu David L., Tree-inspired piezoelectric energy harvesting, Journal of Fluids and Structures, 01/2012, Volume 28.
  • [26] Corcolle R., Salaün E., Bouillault F., Bernard Y., Richard C., Badel A., Guyomar D., Modeling of a beamstructurewith piezoelectric materials: introduction to SSD techniques, COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol.27 Issue: 1, (2008) 205-214 [Crossref]
  • [27] de Abreu G.L.C.M., Ribeiro J.F. and Steffen V., Finite element modeling of a plate with localized piezoelectric sensors and actuators, journal of the Braz. Soc. of Mech. Sci. & Eng., Vol. 26, No. 2, (April-June) (2004).
  • [28] Jalili N., Piezoelectric-Based Vibration Control, From Macro to Micro-Nano Scale Systems, Springer, 2009.
  • [29] Lin C.C., Huang H.N., Vibration control of beam-plates with bonded piezoelectric sensors and actuators, Journal of computers and structures 73 (1999) 239-248.
  • [30] Nguyen C.H., Pietrzko S.J., FE analysis of a PZT- actuated adaptive beam with vibration damping using a parallel R-L shunt circuit, journal of finite elements in analysis and design 42, (2006) 1231-1239.
  • [31] Park C.H., Dynamics modeling of beams with shunted piezoelectric elements, journal of Sound and vibration 268 (2003) 115-129.
  • [32] Varadan V. V., Closed loop finite element modeling of active/ passive damping in structural vibration control, journal of smart materials and structures 5 (1996) 685-694.
  • [33] Chen J.S., Chen S.H., Wu K.C., Analysis of asymmetric piezoelectric composite beam, DTIP 2007, Stresa, lago Maggiore, Italy, 25-27 April, 2007.
  • [34] Kayacik O., J.C.B. Jr., Sloss J.M., Adali S., Sadek I. S., Integral equation approach for piezo patch vibration control of beams with various types of damping, Journal of computers and structures 86 (2008) 357-366.
  • [35] Pons L., Rodríguez H., Rocon E., Fernández J.F., Villegas M., Practical consideration of shear strain correction factor and Rayleigh damping in models of piezoelectric transducers, Journal of Sensors and Actuators A 115 (2004) 202-208.
  • [36] Corcolle R., Bouillault F., Bernard Y., Modeling of a plate with piezoelectric patches: Damping application, IEEE Transactions on Magnetics vol. MAG 44, no.6 (2008) 798-801.
  • [37] Liu G.R., Vibration control simulation of laminated composite plates with integrated piezoelectric, Journal of sound and vibration, Vol 220, Issue 5 (1999) 827-846.
  • [38] Wang S. Y., Dynamic stability analysis of finite element modeling of piezoelectric composite plates, International Journal of Solids and Structures, Vol.41, Issue: 3-4 (2003) 745-764.
  • [39] Kusculuoglu Z.K., Royston T., Finite element formulation for composite plates with piezoceramic layers for optimal vibration control applications, Journal of Smart Mater. And Struct. 14 (2005) 1139-1153.
  • [40] Kwon Y.W., Bang H., The Finite Element Method UsingMATLAB, Second Edition, CRC Press, 2000.
  • [41] Liu M., Gorman D. G., Formulation of Rayleigh damping and its extensions, Journal of computers and structures, Vol.57, Issue 2, (1995) 277-285.
  • [42] Pons L. , Rodríguez H. , Rocon E., Fernández J. F., Villegas M., Practical consideration of shear strain correction factor and Rayleigh damping in models of piezoelectric transducers, Journal of Sensors and Actuators A 115 (2004) 202-208.
  • [43] Hariri H., Bernard Y., Razek A., Analytical and finite element model for unimorph piezoelectric actuator: Actuator design, Proceedings of Piezo2011, sestriere, 27 February 2011, pp. 71- 75
  • [44] Wang Q. M., Cross L. E., Performance analysis of piezoelectric cantilever bending actuators, Journal of Ferroelectrics, Vol. 215 (1998) 187-213.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_1515_cls-2015-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.