Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2016 | 53 | 1 | 37-46

Tytuł artykułu

Allocation of oaks to Kraft classes based on linear and nonlinear kernel discriminant variables

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
A method of discriminant variable determination was used to visualize the division of oak trees into Kraft classes. Usual discriminant variables and several types of kernel discriminant variables were studied. For this purpose the traits of oak (Quercus L.) trees, measured on standing trees, were used. These traits included height of tree, breast height diameter and crown projection area. The use of the Gaussian kernel and modified Gaussian kernel enabled the clearest division into Kraft classes. In particular, the latter method proved to be the most effective.

Wydawca

Czasopismo

Rocznik

Tom

53

Numer

1

Strony

37-46

Opis fizyczny

Daty

wydano
2016-06-01
online
2016-06-08

Twórcy

  • Department of Mathematical and Statistical Methods, Poznań University of Life Sciences. Wojska Polskiego 28, 60-637 Poznań, Poland
  • Department of Forest Management, Poznań University of Life Sciences, Wojska Polskiego 71c, 60-625 Poznań, Poland

Bibliografia

  • Anderson T.W. (2003): An introduction to multivariate statistical analysis. New York, Wiley.
  • Baudat G., Anour F. (2000): Generalized discriminant analysis using a kernel approach. Neural Computation 12: 2385-2404.[Crossref]
  • Deręgowski K., Krzyśko M. (2014): A kernel based learning algorithm combining kernel discriminant coordinates and kernel principal components. Biometrical Letters 51(1): 57-73.[Crossref]
  • Grala-Michalak J., Kaźmierczak K. (2011): Discriminant analysis for Kraft’s classes of trees. Biometrical Letters 48(1): 67-81.
  • Jaworski A. (2004): Fundamentals of incremental and ecological regeneration and stands tending (in Polish). Państwowe Wydawnictwo Rolnicze i Leśne, Warsaw, Poland.
  • Jing Z., Weiqing M., Ye Z. (2015): Fisher Linear Discriminant Method for Forest Fire Risk Points on Transmission Line. International Journal of Smart Home. 9(4): 25-34. [Crossref]
  • Kaźmierczak K. (2009): Selected measures of the growth space of a single tree in maturing pine stand (in Polish). Sylwan 5: 298-303.
  • Kaźmierczak K. (2010): Selected measures of the growth space of a single tree in a 50-year-old Scots pine stand (in Polish). Sylwan 154(4): 267-274.
  • Kaźmierczak K. (2012): Selected measures of the growth space of a single tree in a 35-years-old pine stand (in Polish). Sylwan 156(4): 280-286.
  • Kaźmierczak K. (2013): The current growth increment of pine tree stands comprising three different age classes (in Polish). Leśne Prace Badawcze, 74(2): 93-100.
  • Kornacki J., Ćwik J. (2005): Statistical learning systems (in Polish). WNT Warsaw.
  • Kraft G. (1884): Beiträge zur Lehre von den Durchforstungen, Schlagstellungen und Lichtungshieben. Hannover, Klindworth.
  • Krzyśko M. (1990): Discriminant analysis (in Polish). WNT, Warsaw.
  • Krzyśko M. (2009): Fundamentals of multivariate statistical inference (in Polish). Wydawnictwo Naukowe UAM, Poznań: 267-278.
  • Krzyśko M., Wołyński W., Górecki T., Skrzybut M. (2008): Learning systems. Pattern Recognition. Cluster analysis, reduction of dimensionality (in Polish). WNT Warsaw.
  • Mika S., Rätsch G., Weston J., Schölkopf B., Müller K.R. (1999): Fisher discriminant analysis with kernels. In: Neural Networks for Signal Processing, Hu Y.H., Larsen J., Wilson E., and Douglas S. (eds.), IX: 41-48.
  • Thessler S., Sesnie S., Ramos Bendaña Z.S., Ruokolainen K., Tomppo E., Finegan B. (2008): Using k-nn and discriminant analyses to classify rain forest types in a Landsat TM image over northern Costa Rica. Remote Sensing of Environment, 112(5): 2485-2494.[Crossref][WoS]
  • Zawieja B., Kaźmierczak K. (2015): The method of standing trees allocation to different biosocial classes. Colloquium Biometricum 45: 78-92.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_1515_bile-2016-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.