CONTENTS 0. Introduction.................................................................................................5 1. Preliminaries...............................................................................................6 2. Weakly null sequences and the l¹-index......................................................9 3. Comparison with the l¹-index.....................................................................12 4. Construction of weakly null sequences with large oscillation index............21 5. Reflexive spaces with large oscillation index.............................................33 6. Comparison with the averaging index........................................................37 References....................................................................................................43
Department of Mathematics University of Crete Heraklion, Crete Greece
Bibliografia
[A-O] D. Alspach and E. Odell, Averaging Weakly Null Sequences, Lecture Notes in Math. 1332, Springer, Berlin 1988.
[A] S. Argyros, Banach spaces of the type of Tsirelson, preprint.
[Bo] J. Bourgain, On convergent sequences of continuous functions, Bull. Soc. Math. Belg. Sér. B 32 (1980), 235-249.
[C-S] P. Casazza and T. Shura, Tsirelson's Space, Lecture Notes in Math. 1363, Springer, Berlin 1989.
[D1] J. Diestel, Geometry of Banach Spaces-Selected Topics, Lecture Notes in Math. 485, Springer, Berlin 1975.
[D2] J. Diestel, Sequences and Series in Banach Spaces, Graduate Texts in Math. 92, Springer, Berlin 1984.
[Dor] L. Dor, On projections in $L_1$, Ann. of Math. 102 (1975), 463-474.
[G-H] D. C. Gillespie and W. A. Hurwitz, On sequences of continuous functions having continuous limits, Trans. Amer. Math. Soc. 32 (1930), 527-543.
[H-O-R] R. Haydon, E. Odell and H. P. Rosenthal, On Certain Classes of Baire-1 Functions with Applications to Banach Space Theory, Lecture Notes in Math. 1470, Sprin- ger, Berlin 1991.
[J] R. C. James, A separable somewhat reflexive Banach space with nonseparable dual, Bull. Amer. Math. Soc. 80 (1974), 738-743.
[K-L] A. S. Kechris and A. Louveau, A classification of Baire-1 functions, Trans. Amer. Math. Soc. 318 (1990), 209-236.
[K] K. Kuratowski, g Topology, I, Academic Press, New York 1966.
[L-S] J. Lindenstrauss and C. Stegall, Examples of separable spaces which do not contain $l_1$ and whose duals are non-separable, Studia Math. 54 (1975), 81-105.
[L-T,I] J. Lindenstrauss and L. Tzafriri, g Classical Banach Spaces I: Sequence Spaces, Ergeb. Math. Grenzgeb. 92, Springer, Berlin 1977.
[L-T,II] J. Lindenstrauss and L. Tzafriri, g Classical Banach Spaces II: Function Spaces, Ergeb. Math. Grenzgeb. 97, Springer, Berlin 1979.
[M-R] B. Maurey and H. P. Rosenthal, Normalized weakly null sequence with no unconditional subsequence, Studia Math. 61 (1977), 77-98.
[O] E. Odell, A normalized weakly null sequence with no shrinking subsequence in a Banach space not containing $l_1$, Compositio Math. 41 (1980), 287-295.
[P-S] A. Pełczyński and W. Szlenk, An example of a non-shrinking basis, Rev. Roumaine Math. Pures Appl. 10 (1965), 961-966.
[R] H. P. Rosenthal, A characterization of Banach spaces containing $l^1$, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411-2413.
[Sch] J. Schreier, Ein Gegenbeispiel zur Theorie der schwachen Konvergenz, Studia Math. 2 (1930), 58-62.
[Sz] W. Szlenk, The non-existence of a separable reflexive Banach space universal for all separable reflexive Banach spaces, ibid. 30 (1968), 53-61.
[Z] Z. Zalcwasser, Sur une propriété du champ des fonctions continues, ibid. 2 (1930), 63-67.