CONTENTS Part I 1. Introduction...................................................................................................................................................... 5 2. Preliminaries.................................................................................................................................................. 6 2.1. Notation........................................................................................................................................................ 6 2.2. Local preliminaries.................................................................................................................................... 6 3. The space $\mathscr{A}$............................................................................................................................. 9 3.1. Generalities................................................................................................................................................. 9 3.2. Linear transformations of $\mathscr{A}$............................................................................................... 10 3.3. Global measure.......................................................................................................................................... 11 4. Lattices and convex bodies.......................................................................................................................... 11 4.1. Lattices......................................................................................................................................................... 11 4.2. Convex bodies............................................................................................................................................. 13 5. An analogue of Minkowski's convex body theorem................................................................................. 15 5.1. Convex body theorem................................................................................................................................ 15 5.2. Applications of theorem 2......................................................................................................................... 16 6. Successive minima....................................................................................................................................... 18 6.1. Preliminaries............................................................................................................................................... 18 6.2. The product of successive minima; an upper bound.......................................................................... 19 6.3. The product of successive minima; a lower bound............................................................................ 22 6.4. Applications to algebraic number theory................................................................................................ 24 7. T-adeles........................................................................................................................................................... 32 7.1. The general theory for T-adeles............................................................................................................... 32 7.2. Two special cases..................................................................................................................................... 35 Part II 1. Introduction ..................................................................................................................................................... 37 2. Topology in $\mathscr{G}$................................................................................................................... 37 2.1. Two topologies on $\mathscr{G}$........................................................................................................... 37 2.2. Comparison of the two topologies.......................................................................................................... 39 3. Compactness for lattices............................................................................................................................. 41 3.1. Two topologies on the lattice space....................................................................................................... 41 3.2. An important lemma................................................................................................................................... 43 3.3. An analogue of Mahler’s compactness theorem................................................................................. 44 4. The Chabauty topology................................................................................................................................. 45 5. T-adeles ......................................................................................................................................................... 47 References.......................................................................................................................................................... 49
[1] R. P. Bambah, A. Woods and H. Zassenhaus, Three proofs of Minkowski's second inequality in the geometry of numbers, J. Austral. Math. Soc. 5 (1965), pp. 453-462.
[2] D. G. Cantor, On the elementary theory of diophantine approximation over the ring of adeles I, Illinois J. Math. 9 (1965), pp. 677-700.
[3] J. W. S. Cassets, An introduction to the geometry of numbers, Berlin 1959.
[4] C. Chabauty, Limite d'ensembles et géométrie des nombres, Bull. Soc. Math. France 77 (1950), pp. 143-151.
[5] S. Lang, Algebraic numbers, Addison-Wesley, Reading, Maes., 1964.
[6] I. S. Luthar, A note on a result of Mahler's, J. Austral. Math. Soc. 6 (1966), pp. 399-401.
[7] E. Lutz, Sur les approximations diophantiehnes linéaires P-adiques, Actualités Sci. Ind. 1224, Paris 1955.
[8] A. M. Macbeath, Abstract theory of packings and coverings I, Proc. Glasgow Math. Assoc. 4 (1959-1960), pp. 92-95.
[9] A. M. Macbeath and S. Swierczkowski, Limits of lattices in a compactly generated group, Canadian J. Math. 12 (1960), pp. 427-437.
[10] K. Mahler, An analogue to Minkowski's geometry of numbers in a field of series, Ann. of Math. 42 (1941), pp. 488-522.
[11] K. Mahler, Inequalities for ideal bases in algebraic number fields, J. Austral. Math. Soc. 4 (1964), pp. 425-448.
[12] R. B. McFeat, Geometry of numbers in adele spaces, University of Adelaide Ph. D. thesis, 1969.
[13] K. Rogers and H. P. F. Swinnerton-Dyer, Geometry of numbers over algebraic number fields, Trans. Amer. Math. Soc. 88 (1958), pp. 227-242.
[14] S. Swierczkowski, Abstract theory of packings and coverings II, Proc. Glasgow Math. Assoc. 4 (1959-1960), pp. 96-100.
[15] J. T. Tate, Fourier analysis in number fields and Hecke's zeta-functions, Algebraic number theory (Proc. Instructional Conference, Brighton, 1965), pp. 305-347, London 1967.
[16] E. Weiss, Algebraic number theory, New York 1963.
[17] J. W. S. Cassels, Global fields, Algebraic number theory (Proc. Instructional Conference, Brighton 1965), pp. 42-84, London 1967.