EN
CONTENTS
Introduction........................................................................................................................................................................................................... 5
I. THE CAUCHY-DARBOUX PROBLEM IN FUNCTION CLASSES $C^1'*(Δ_{a,b};E)$ AND $L^{1,*}_1(Δ_{a,b};E)$......................... 7
1. Basic function classes ................................................................................................................................................................................... 7
2. The Cauchy-Darboux problem ...................................................................................................................................................................... 12
II. Comparison of solutions ............................................................................................................................................................................... 18
3. The growth estimations.................................................................................................................................................................................. 18
4. Maximal solutions............................................................................................................................................................................................ 26
5. A theorem on extension of inequalities........................................................................................................................................................ 28
6. Effective estimation in the case $M_1$, (b)................................................................................................................................................. 30
III. COMPARATIVE CRITERIA OF EXISTENCE AND UNIQUENESS OP SOLUTIONS OF THE CAUCHY-DARBOUX PROBLEM...................................................................................................................................................................................... 35
7. Basic classes of comparative functions...................................................................................................................................................... 35
8. Existence and uniqueness of solutions of the Cauchy-Darboux problem............................................................................................ 42
9. Remarks on the continuous dependence of solutions on boundary data and on the second member........................................ 47
10. Examples......................................................................................................................................................................................................... 49
BIBLIOGRAPHICAL REMARKS.......................................................................................................................................................................... 66
BIBLIOGRAPHY..................................................................................................................................................................................................... 68
INDEX OF SYMBOLS............................................................................................................................................................................................ 74