We investigate a mathematical model of population dynamics for a population of two sexes (male and female) in which new individuals are conceived in a process of mating between individuals of opposed sexes and their appearance is postponed by a period of gestation. The model is a system of two partial differential equations with delay which are additionally coupled by mathematically complicated boundary conditions. We show that this model has a global solution. We also analyze stationary ('permanent') solutions and show that such solutions exist if the model parameters satisfy two nonlinear relations.
Department of Mathematics, Warsaw University, Banacha 2, 02-097 Warszawa, Poland
Bibliografia
[1] G. Busoni and S. Matucci, Population dynamics with delay, Studi Urbinati I (1997), 119-137 (paper presented at the meeting 'La matematica nei problemi dell'ambiente, della biologia e della medicina', Urbino, 1996).
[2] K. P. Hadeler, Pair formation models with maturation period, J. Math. Biology 32 (1993), 1-15.
[3] L. Teglielli, Dinamica di popolazioni a due sessi, Ricerca di soluzioni per sistenti, Università di Firenze, 1998.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-zmv27i1p21bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.