Asymptotic properties of the kth largest values for semi-Pareto processes are investigated. Conditions for convergence in distribution of the kth largest values are given. The obtained limit laws are represented in terms of a compound Poisson distribution.
Faculty of Civil and Environment Engineering, Department of Building Constructions, Częstochowa Technical University, ul. Akademicka 3, 42-200 Częstochowa, Poland
Bibliografia
[1] B. C. Arnold and J. T. Hallett, A characterization of the Pareto process among stationary stochastic processes of the form $X_n$= c min($X_n-1$,$Y_n$), Statist. Probab. Lett. 8 (1989), 377-380.
[2] J. Gani, On the probability generating function of the sum of Markov Bernoulli random variables, J. Appl. Probab. 19A (1982), 321-326.
[3] M. R. Leadbetter, G. Lindgren and H. Rootzén, Extremes and Related Properties of Random Sequences and Processes, Springer, New York, 1983.
[4] J. Pawłowski, Poisson theorem for non-homogeneous Markov chains, J. Appl. Probab. 26 (1989), 637-642.
[5] R. N. Pillai, Semi-Pareto processes, ibid. 28 (1991), 461-465.
[6] Y. H. Wang, On the limit of the Markov binomial distribution, ibid. 18 (1981), 937-942.
[7] H. C. Yeh, B. C. Arnold and C. A. Robertson, Pareto processes, ibid. 25 (1988), 291-301.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-zmv24i2p189bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.