A gradient method for solving an optimal control problem described by a parabolic equation is considered. The gradient projection method is applied to solve the problem. The convergence of the projection algorithm is investigated.
Department of Mathematics, Faculty of Science, Minia University Minia, Egypt
Bibliografia
[1] A. G. Butkovskiĭ, Optimal Control Theory for Systems with Distributed Parameters, Nauka, Moscow, 1965 (in Russian).
[2] Yn. V. Egorov, On some optimal control problems, Zh. Vychisl. Mat. i Mat. Fiz. 3 (1963), 887-904 (in Russian).
[2] M. H. Farag, A numerical solution to a nonlinear problem of the identification of the characteristics of a mathematical model of heat exchange, in: Mathematical Modeling and Automated Systems, A. D. Iskenderov (ed.), Bakin. Gos. Univ., Baku, 1990, 23-30 (in Russian).
[4] M. H. Farag and S. H. Farag, An existence and uniqueness theorem for one optimal control problem, Period. Math. Hungar. 30 (1995), 61-65.
[5] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, N.J., 1964.
[6] A. D. Iskenderov, On a certain inverse problem for quasilinear parabolic equations, Differentsial'nye Uravneniya 10 (1974), 890-898 (in Russian).
[7] A. D. Iskenderov and R. K. Tagiev, Optimization problems with controls in coefficients of parabolic equations, ibid. 19 (1983), 1324-1334 (in Russian).
[8] J.-L. Lions, Control problems in systems described by partial differential equations, in: Mathematical Theory of Control, A. V. Balakrishnan and L. W. Neustadt (eds.), Academic Press, New York and London, 1969, 251-271.
[9] J.-L. Lions, Optimal Control by Systems Described by Partial Differential Equations, Mir, Moscow, 1972 (in Russian).
[10] K. A. Lurie, Optimal Control in Problems of Mathematical Physics, Nauka, Moscow, 1975 (in Russian).
[11] M. D. Madatov, Regularization of one class of optimal control problems, in: Approximate Methods and Computer, A. D. Iskenderov (ed.), Bakin. Gos. Univ., Baku, 1982, 78-80 (in Russian).
[12] A. Mokrane, An existence result via penalty method for some nonlinear parabolic unilateral problems, Boll. Un. Mat. Ital. B 8 (1994), 405-417.
[13] G. A. Phillipson and S. K. Mitter, Numerical solution of a distributed identification problem via a direct method, in: Computing Methods in Optimization Problems-2, L. A. Zadeh, L. W. Neustadt and A. V. Balakrishnan (eds.), Academic Press, New York, 1969, 305-315.
[14] E. Polak, Computational Methods in Optimization, Academic Press, New York, 1971.
[15] B. N. Pshenichnyĭ and Yu. M. Danilin, Numerical Methods in Extremal Problems, Mir, Moscow, 1982.
[16] J. B. Rosen, The gradient projection method for nonlinear programming. Part I: Linear constraints, SIAM J. Appl. Math. 8 (1960), 181-217.
[17] J. B. Rosen, The gradient projection method for nonlinear programming. Part II: Nonlinear constraints, ibid. 9 (1961), 514-532.
[18] Ts. Tsachev, Optimal control of linear parabolic equation: The constrained right-hand side as control function, Numer. Funct. Anal. Optim. 13 (1992), 369-380.
[19] F. P. Vasil'ev, Numerical Methods for Solving Extremal Problems, Nauka, Moscow, 1988 (in Russian).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-zmv24i2p141bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.