We give sufficient conditions for a diffeomorphism in the plane to be analytically conjugate to a shift in a complex neighborhood of a segment of an invariant curve. For a family of functions close to the identity uniform estimates are established. As a consequence an exponential upper estimate for splitting of separatrices is established for diffeomorphisms of the plane close to the identity. The constant in the exponent is related to the width of the analyticity domain of the limit flow separatrix. Unlike the previous works the cases of non-area-preserving maps and parabolic fixed points are included.
Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via, 585, 08071 Barcelona, Spain
Bibliografia
[Fon95] E. Fontich, Rapidly forced planar vector fields and splitting of separatrices, J. Differential Equations 119 (1995), 310-335.
[FS90] E. Fontich and C. Simó, The splitting of separatrices for analytic diffeomorphisms, Ergodic. Theory Dynam. Systems 10 (1990), 295-318.
[Laz84] V. F. Lazutkin, Splitting of separatrices for Chirikov's standard map, VINITI no. 6372/84, 1984 (in Russian).
[Laz87] V. F. Lazutkin, Separatrices splitting for a standard family of the area-preserving maps, in: M. Sh. Birman (ed.), Wave Propagation. Scattering Theory, Topics in Math. Phys. 12, Leningrad State University, 1987, 32-41 (in Russian).
[Laz91] V. F. Lazutkin, Exponential splitting of separatrices and an analytical integral for the semistandard map, preprint, Université Paris VII, 1991.
[Nei84] A. I. Neishtadt, The separation of motion in systems with rapidly rotating phase, Prikl. Mat. Mekh. 48 (1984), 197-204, (in Russian).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-zmv24i2p127bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.