Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1995-1996 | 23 | 2 | 219-237

Tytuł artykułu

Average cost Markov control processes with weighted norms: value iteration

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This paper shows the convergence of the value iteration (or successive approximations) algorithm for average cost (AC) Markov control processes on Borel spaces, with possibly unbounded cost, under appropriate hypotheses on weighted norms for the cost function and the transition law. It is also shown that the aforementioned convergence implies strong forms of AC-optimality and the existence of forecast horizons.

Rocznik

Tom

23

Numer

2

Strony

219-237

Opis fizyczny

Daty

wydano
1995
otrzymano
1994-10-02

Twórcy

  • Departamento de Matemáticas, Universidad Autónoma Mettropolitana-I, Apartado Postal 55-534, 09340 México D.F., Mexico
  • Departamento de Matemáticas, Cinvestav-IPN, Apartado Postal 14-740, 07000 México D.F., Mexico

Bibliografia

  • [1] D. P. Bertsekas, Dynamic Programming : Deterministic and Stochastic Models, Prentice-Hall, Englewood Cliffs, N.J., 1987.
  • [2] E. B. Dynkin and A. A. Yushkevich, Controlled Markov Processes, Springer, New York, 1979.
  • [3] J. Flynn, On optimality criteria for dynamic programs with long finite horizons, J. Math. Anal. Appl. 76 (1980), 202-208.
  • [4] E. Gordienko and O. Hernández-Lerma, Average cost Markov control processes with weighted norms: existence of canonical policies, this volume, 199-218.
  • [5] O. Hernández-Lerma, Adaptive Markov Control Processes, Springer, New York, 1989.
  • [6] O. Hernández-Lerma and J. B. Lasserre, A forecast horizon and a stopping rule for general Markov decision processes, J. Math. Anal. Appl. 132 (1988), 388-400.
  • [7] O. Hernández-Lerma and J. B. Lasserre, Average cost optimal policies for Markov control processes with Borel state space and unbounded costs, Systems Control Lett. 15 (1990), 349-356.
  • [8] O. Hernández-Lerma and J. B. Lasserre, Linear programming and average optimality of Markov control processes on Borel spaces-unbounded costs, SIAM J. Control Optim. 32 (1994), 480-500.
  • [9] O. Hernández-Lerma and J. B. Lasserre, Discrete-Time Markov Control Processes, book in preparation.
  • [10] G. P. Klimov, Existence of a final distribution for an irreducible Feller process with invariant measure, Math. Notes 37 (1985), 161-163.
  • [11] R. Montes-de-Oca and O. Hernández-Lerma, Value iteration in average cost Markov control processes on Borel spaces, Acta Appl. Math., to appear.
  • [12] E. Nummelin, General Irreducible Markov Chains and Non-Negative Operators, Cambridge University Press, Cambridge, 1984.
  • [13] R. Rempała, Forecast horizon in a dynamic family of one-dimensional control problems, Dissertationes Math. 315 (1991).
  • [14] H. L. Royden, Real Analysis, 2nd ed., Macmillan, New York, 1971.
  • [15] M. Schäl, Conditions for optimality and for the limit of n-stage optimal policies to be optimal, Z. Wahrsch. Verw. Gebiete 32 (1975), 179-196.
  • [16] L. I. Sennott, Value iteration in countable state average cost Markov decision processes with unbounded costs, Ann. Oper. Res. 28 (1991), 261-272.
  • [17] D. J. White, Dynamic programming, Markov chains, and the method of successive approximations, J. Math. Anal. Appl. 6 (1963), 373-376.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-zmv23i2p219bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.