We introduce a simple and powerful procedure-the observer method-in order to obtain a reliable method of numerical integration over an arbitrary long interval of time for systems of ordinary differential equations having first integrals. This aim is achieved by a modification of the original system such that the level manifold of the first integrals becomes a local attractor. We provide a theoretical justification of this procedure. We report many tests and examples dealing with a large spectrum of systems with different dynamical behaviour. The comparison with standard and symplectic methods of integration is also provided.
Département de Mathématiques, Université De Rouen, URA CNRS 1378, 76821 Mont Saint Aignan, France
Bibliografia
[1] M. Adler and P. van Moerbeke, The algebraic integrability of geodesic flow on SO(4), Invent. Math., 67 (1982) 297-331.
[2] V. I. Arnold, Mathematical Methods of Classical Mechanics, Graduate Texts in Math. 60, Springer, Berlin (1989).
[3] V. I. Arnold, V. V. Kozlov and A. I. Neishtadt, Mathematical aspects of classical and celestial mechanics, V. I. Arnold (ed.) Dynamical Systems III, Encyclopaedia Math. Sci. 3, Springer, Berlin (1988).
[4] M. Artigue, V. Gautheron et E. Isambert, Ensemble de bifurcation et topologie des variétés intégrales dans le problème du solide pesant, J. Méc. Théor. Appl., 5 (1986) 429-469.
[5] M. Audin et R. Shilol, Variétés abéliennes réelles et toupie de Kovalevski, Publ. IRMA (preprint), Strasbourg (1992).
[6] J. Baumgarte, Stabilization of the differential equations of Keplerian motion, in: B. D. Tapley and V. Szebehely (eds.), Recent Advances in Dynamical Astronomy, Reidel, Dordrecht, (1973) 38-44.
[7] J. Baumgarte, Stabilization, manipulation and analytic step adaptation, in: V. Szebehely and B. D. Tapley (eds.), Long Time Predictions in Dynamics, Reidel, Dordrecht, (1976) 153-163.
[8] G. Benettin, M. Casartelli, L. Galgani, A. Giorgilli and J.-M. Strelcyn, On the reliability of numerical study of stochasticity. Part I: Existence of time averages, Nuovo Cimento, 44B (1978) 183-195.
[9] G. Benettin, M. Casartelli, L. Galgani, A. Giorgilli and J.-M. Strelcyn, On the reliability of numerical study of stochasticity. Part II: Identification of time averages, ibid., 50B (1979) 211-232.
[10] D. G. Bettis (ed.), Proceedings of the Conference on the Numerical Solution of Ordinary Differential Equations, 19- 20 October 1972, the University of Texas at Austin, Lecture Notes in Math. 362, Springer, Berlin, 1974.
[11] O. I. Bogoyavlensky, Integrable Euler equations on Lie algebras arising in problems of mathematical physics, Math. USSR-Izv., 25 (1984) 207-257.
[12] O. I. Bogoyavlensky, Integrable Euler equations on SO(4) and their physical applications, Comm. Math. Phys., 93 (1984) 417-436.
[13] O. I. Bogoyavlensky, New integrable problems of classical mechanics, ibid., 94 (1984) 225-269.
[14] O. I. Bogoyavlensky, Euler equations on finite dimensional Lie algebras arising in physical problems, ibid., 95 (1984) 307-315.
[15] O. I. Bogoyavlensky, Periodic solutions in a model of pulsar rotation, ibid., 102 (1985) 349-359.
[16] O. I. Bogoyavlensky, Integrable cases of a rigid body dynamics and integrable systems on the ellipsoids, ibid., 103 (1986) 305-322.
[17] O. I. Bogoyavlensky, Some integrable cases of Euler equations I, Dokl. Akad. Nauk SSSR, 287 (1986) 1105-1108 (in Russian).
[18] O. I. Bogoyavlensky, Some integrable cases of Euler equations II, ibid., 292 (1987) 318-322 (in Russian).
[19] O. I. Bogoyavlensky, Boundary value problems of mathematical physics, Proc. Steklov Inst. Math., 95 (1988).
[20] O. I. Bogoyavlensky, Euler equations on finite dimensional Lie coalgebras, Uspekhi Mat. Nauk, 47 (1) (1992) 107-146 (in Russian); English transl.: Russian Math. Surveys 47 (1).
[21] J. C. Butcher, Implicit Runge-Kutta processes, Math. Comput., 18 (1964) 50-64.
[22] P. J. Channell and J. C. Scovel, Symplectic integrators of Hamiltonian systems, Nonlinearity, 3 (1990) 231-259.
[23] P. J. Channell and J. C. Scovel, Integrators for Lie-Poisson dynamical systems, Phys. D, 50 (1991) 80-88.
[24] I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory, Springer, Berlin (1982).
[25] R. L. Devaney, Homoclinic orbits in Hamiltonian systems, J. Differential Equations, 21 (1976) 431-438.
[26] B. A. Dubrovin, A. T. Fomenko and S. P. Novikov, Modern Geometry-Methods and Applications. Part I: The Geometry of Surfaces. Transformation Groups and Fields, Graduate Texts in Math. 93, Springer, Berlin (1984).
[27] B. A. Dubrovin, A. T. Fomenko and S. P. Novikov, Modern Geometry - Methods and Applications. Part II: The Geometry and Topology of Manifolds, Graduate Texts in Math. 104, Springer, Berlin (1985).
[28] T. Eirola and J. M. Sanz-Serna, Conservation of integrals and symplectic structure in the integration of differential equations by multistep methods, Numer. Math., 61 (1992) 281-290.
[29] El Hamidi, Propriétés stochastiques d'un système non-linéaire en dimension finie, Thèse de physique théorique, Université de Pau (1989).
[30] K. Feng and M.-Z. Qin, The symplectic methods for the computation of hamiltonian equations, in: Y.-W. Zhu and B.-Y. Guo (eds.), Numerical Methods for Partial Differential Equations, Lecture Notes in Math. 1297, Springer, Berlin, (1987), 1-37.
[31] A. F. Filippov, Differential Equations with Discontinuous Right Hand Side, Nauka, Moscow (1985) (in Russian).
[32] A. T. Fomenko, Integrability and Nonintegrability in Geometry and Mechanics, Kluwer, Dordrecht (1988).
[33] A. T. Fomenko and V. V. Trofimov, Integrable Systems on Lie Algebras and Symmetric Spaces, Gordon and Breach, New York (1988).
[34] N. K. Gavrilov and L. P. Shil'nikov, On bifurcations of the equilibrium states of a hamiltonian system with two degrees of freedom, Selecta Math. Sov., 10 (1) (1991) 61-68.
[35] Z. G. Ge and J. E. Marsden, Lie-Poisson-Hamilton-Jacobi theory and Lie- Poisson integrators, Phys. Lett. A, 133 (3) (1988) 134-139.
[36] C. W. Gear, Invariants and numerical methods for ODEs, Phys. D, 60 (1992) 303-310.
[37] B. Gladman and M. Dunca, Symplectic integrators for long-term integrations in celestial mechanics, Celestial Mech., 52 (1991) 221-240.
[38] D. Greenspan, Arithmetic Applied Mathematics, Pergamon Press, Oxford (1980).
[39] J. W. Grizzle and P. E. Moraal, Newton, observers and nonlinear discrete-time control, in: Proc. 29th Conf. on Decision and Control, Honolulu, Hawaii, 1990, 760-767.
[40] L. Haine, Geodesic flow on SO(4) and abelian surfaces, Math. Ann., 263 (1983) 435-472.
[41] L. Haine, The algebraic complete integrability of geodesic flow on SO(N), Comm. Math. Phys., 94 (1984) 271-287.
[42] E. Hairer, S. P. Norsett and G. Wanner, Solving Ordinary Differential Equa- tions I. Nonstiff Problems, Springer, Berlin (1987).
[43] P. Hartman, Ordinary Differential Equations, Wiley, New York (1964).
[44] K. Hockett, Chaotic numerics from an integrable hamiltonian system, Proc. Amer. Math. Soc., 108 (1990) 271-281.
[45] V. D. Irtegov, Invariant Manifolds of Stationary Motions and Their Stability, Nauka, Siberian branch, Novosibirsk (1985 (in Russian).
[46] H. Kinoshita, H. Yoshida and H. Nakai, Symplectic integrators and their application to dynamical astronomy, Celestial Mech., 50 (1991) 59-71.
[47] A. M. Kovalev and A. N. Chudnenko, On stability of the equilibrium point of a Hamiltonian system with two degrees of freedom in the case of equal frequencies, Dokl. Akad. Nauk Ukrain. SSSR Ser. A, 11 (1977) 1010-1013 (in Russian).
[48] V. V. Kozlov, Integrability and nonintegrability in hamiltonian mechanics, Uspekhi Mat. Nauk, 38 (1) (1983) 3-67 (in Russian).
[49] V. V. Kozlov and D. A. Onishenko, Nonintegrability of Kirchhoff equations, Dokl. Akad. Nauk SSSR, 266 (1982) 271-281 (in Russian).
[50] J. D. Lambert, Computational Methods in Ordinary Differential Equations, Wiley, New York (1973).
[51] M. Lecar, A comparison of eleven numerical integrations of the same gravitational 25-body problem, Bull. Astronom., Sér. 3 vol. III fasc. 1 (1968) 91-104.
[52] E. Leimanis, The General Problem of the Motion of Coupled Rigid Bodies about a Fixed Point, Springer, Berlin (1965).
[53] L. M. Lerman and Ya. L. Umanskiĭ, On the existence of separatrix loops in four-dimensional systems similar to the integrable hamiltonian systems, J. Appl. Math. Mech., 47 (3) (1983) 335-340.
[54] T. Levi-Civita and G. Amaldi, Lezioni di meccanica razionale, Vol. II, Part 2, Zanichelli, Bologna (1927).
[55] A. J. Lichtenberg and M. A. Lieberman, Regular and Stochastic Motion, Appl. Math. Sci. 38, Springer, Berlin (1983).
[56] A. J. Maciejewski and J.-M. Strelcyn, Numerical integration of differential equations in presence of first integrals: partial first integrals, to appear.
[57] A. Marciniak, Numerical Solutions of the n-Body Problem, Reidel, Dordrecht (1985).
[58] A. Marciniak, The Selected Numerical Methods for Solving the n-Body Problem, Poznań Technical University, (1989).
[59] A. Marciniak and D. Greenspan, Energy conserving numerical solutions of simplified turbulence equations, Dept. Math., the University of Texas at Arlington, Technical Report 269 (1990).
[60] A. Marciniak and D. Greenspan, Arbitrary order Hamiltonian conserving numerical solutions of Calogero and Toda systems, Computers Math. Appl., 22 (7) (1991) 11-35.
[61] P. E. Nacozy, The use of integrals in numerical integrations of the n-body problem, Astrophys. and Space Sci., 14 (1971) 40-51.
[62] O. Neron de Surgy, Sur les intégrateurs symplectiques pour les systèmes Hamiltoniens standards et les systèmes de Lie-Poisson; une application aux équations d'Euler sur SO(4) Rapport de stage fait à Electricité de France, 1991.
[63] P. J. Olver, Applications of Lie Groups to Differential Equations, Graduate Texts in Math. 107, Springer, Berlin (1986).
[64] S. A. Orszag and J. B. McLaughlin, Evidence that random behavior is generic for nonlinear differential equations, Phys. D 1, (1980)) 68-79.
[65] A. M. Perelomov, Dynamical systems of classical mechanics with hidden symmetry, Preprints Inst. Theor. Exper. Phys. Moscow 82, 1981 (in Russian)..
[66] A. M. Perelomov, Integrable systems of classical mechanics and Lie algebras. The simplest systems, Preprints Inst. Theor. Exper. Phys. Moscow 149, 1981 (in Russian)..
[67] A. M. Perelomov, Integrable systems of classical mechanics and Lie algebras. Constrained systems, Preprints Inst. Theor. Exper. Phys. Moscow 116, 1983 (in Russian)..
[68] A. M. Perelomov, Integrable systems of classical mechanics and Lie algebras. The motion of a rigid body with fixed point, Preprints Inst. Theor. Exper. Phys. Moscow 147, 1983 (in Russian)..
[69] A. M. Perelomov, Integrable systems of classical mechanics and Lie algebras. The motion of a rigid body in the ideal fluid, Preprints Inst. Theor. Exper. Phys. Moscow 151, 1984 (in Russian)..
[70] A. M. Perelomov, Integrable Systems of Classical Mechanics and Lie Algebras, Vol. I, Birkhäuser, Basel (1990).
[72] J. M. Sanz-Serna, Symplectic integrators for Hamiltonian problems: an overview, Acta Numerica 1992, 243-286.
[73] Ya. G. Sinai et al., Ergodic theory with applications to dynamical systems and statistical mechanics, in: Ya. G. Sinai (ed.), Dynamical Systems II, Encyclopaedia Math. Sci. 2, Springer, Berlin (1989).
[74] S. Smale, Topology and mechanics. I, Invent. Math., 10 (1970) 305-331.
[75] S. Smale, Topology and mechanics. II, ibid., 11 (1970) 45-64.
[76] A. G. Sokol'skiĭ, On the stability of an autonomous hamiltonian system with two degres of freedom in the case of equal frequencies, J. Appl. Math. Mech., 38 (1974) 741-749.
[77] E. Stiefel and G. Schiefele, Linear and Regular Celestial Mechanics, Springer, Berlin (1971).
[78] J.-M. Strelcyn, The 'coexistence problem' for conservative dynamical systems: a review, Colloq. Math., 62 (1991) 331-345.
[79] V. V. Strygin and V. A. Sobolev, Separation of Motions by the Method of Integral Manifolds, Nauka, Moscow (1988 (in Russian).
[80] V. V. Trofimov, Introduction to the Geometry of Manifolds with Symmetries, Moscow University Press, Moscow (1989).
[81] S. Ushiki, Central difference schema and chaos, Phys., D 4 (1982) 407-424.
[82] A. P. Veselov, On conditions of integrability of Euler equations on SO(4) Dokl. Akad. Nauk SSSR, 270 (1983) 1298-1300 (in Russian).
[83] H. Yoshida, Construction of higher order symplectic integrators, Phys. Lett. A, 150 (1990) 262-268.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-zmv22z3p373bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.