The best constant in the usual $L^p$ norm inequality for the centered Hardy-Littlewood maximal function on $ℝ^1$ is obtained for the class of all "peak-shaped" functions. A function on the line is called peak-shaped if it is positive and convex except at one point. The techniques we use include variational methods.
Department of Physics, Princeton University, Princeton, New Jersey 08544, U.S.A.
Bibliografia
[Al] J. M. Aldaz, Remarks on the Hardy-Littlewood maximal function, Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), 1-9.
[Ba] J. Barrionuevo, personal comunication.
[Br] U. Brechtken-Manderscheid, Introduction to the Calculus of Variations, Chapman & Hall, London, 1991.
[CG] M. Christ and L. Grafakos, Best constants for two nonconvolution inequalities, Proc. Amer. Math. Soc. 123 (1995), 1687-1693.
[DGS] R. Dror, S. Ganguli and R. Strichartz, A search for best constants in the Hardy-Littlewood maximal theorem, J. Fourier Anal. Appl. 2 (1996), 473-486.
[GM] L. Grafakos and S. Montgomery-Smith, Best constants for uncentered maximal functions, Bull. London Math. Soc. 29 (1997), 60-64.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-smv134i1p57bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.