We define the α - relations between discrete systems and between continuous systems. We show that it is an equivalence relation. α- Equivalence vs. even α-equivalence is analogous to Kakutani equivalence vs. even Kakutani equivalence.
Department of Mathematics, Ajou University, Suwon 442-749, Korea
Bibliografia
[Am] W. Ambrose, Representation of ergodic flows, Ann. of Math. 42 (1941), 723-739
[dJFR] A. del Junco, A. Fieldsteel and D. Rudolph, α - Equivalence: refinement of Kakutani equivalence, Ergodic Theory Dynam. Systems 14 (1994), 69-102.
[Ka] S. Kakutani, Induced measure preserving transformations, Proc. Imp. Acad. Tokyo 19 (1943), 635-641.
[KR] K. Kamayer and D. Rudolph, Restricted orbit equivalence for actions of discrete amenable groups, preprint.
[ORW] D. S. Ornstein, D. Rudolph and B. Weiss, Equivalence of measure preserving transformations, Mem. Amer. Math. Soc. 262 (1982)
[Pa1] K. K. Park, An induced mixing flow under 1 and α, J. Korean Math. Anal. Appl. 195 ( 1995), 335-353.
[Pa2] K. K. Park, Even Kakutani equivalence via α- and β-equivalences, J. Math. Anal. Appl. 195 (1995), 335-353.
[Pa3] K. K. Park, A short proof of even α-equivalence, in: Algorithms, Fractals, and Dynamics (Okyama/Kyoto, 1992), Plenum, New York, 1995, 193-199.
[Ru1] D. Rudolph, A two-valued step coding for ergodic flows, Math. Z. 150 (1976), 201-220.
[Ru2] D. Rudolph, A restricted orbit equivalence, Mem. Amer. Math. Soc. 323 (1985).
[Sh] P. Shields, The Theory of Bernoulli Shifts, Univ. of Chicago Press, 1973.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-smv130i1p9bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.