The following result is proved: Let E be a complemented subspace with an r-finite-dimensional decomposition of a nuclear Köthe space λ(A). Then E has a basis.
[1] C. Bessaga, Some remarks on Dragilev's theorem, Studia Math. 31 (1968), 307-318.
[2] P. B. Djakov and E. Dubinsky, Complemented block subspaces of Köthe spaces, Serdica 14 (1988), 278-282.
[3] P. B. Djakov and B. S. Mityagin, Modified construction of a nuclear Fréchet space without basis, J. Funct. Anal. 23 (1976), 415-423.
[4] E. Dubinsky, Subspaces without basis in nuclear Fréchet spaces, J. Funct. Anal. 26 (1977), 121-130.
[5] E. Dubinsky, The Structure of Nuclear Fréchet Spaces, Lecture Notes in Math. 720, Springer, Berlin, 1979.
[6] E. Dubinsky and B. S. Mityagin, Quotient spaces without basis in nuclear Fréchet spaces, Canad. J. Math. 30 (1978), 1296-1305.
[7] G. Köthe, Topologische lineare Räume, Springer, 1960.
[8] J. Krone, On Pełczyński's problem, in: Advances in the Theory of Fréchet Spaces, T. Terzioğlu (ed.), NATO Adv. Sci. Inst. Ser. C 287, Kluwer Acad. Publ., 1989, 297-304.
[9] R. Meise und D. Vogt, Einführung in die Funktionalanalysis, Vieweg, 1992.
[10] A. Pełczyński, Problem 37, Studia Math. 38 (1970), 476.
[12] M. J. Wagner, Some new methods in the structure theory of nuclear Fréchet spaces, in: Advances in the Theory of Fréchet spaces, T. Terzioğlu (ed.), NATO Adv. Sci. Inst. Ser. C 287, Kluwer Acad. Publ., 1989, 333-354.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-smv127i1p1bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.