For a locally convex space E we prove that the space of n-symmetric tensors is complemented in the space of (n+1)-symmetric tensors endowed with the projective topology. Applications and related results are also given.
Unidad Docente de Matemáticas, E.T.S.I. de Montes, Universidad Politécnica de Madrid, 28040 Madrid, Spain
Bibliografia
[1] J. M. Ansemil and S. Ponte, The compact open and the Nachbin ported topologies on spaces of holomorphic functions, Arch. Math. (Basel) 51 (1988), 65-70.
[2] J. M. Ansemil and J. Taskinen, On a problem of topologies in infinite dimensional holomorphy, ibid. 54 (1990), 61-64.
[3] R. M. Aron and M. Schottenloher, Compact holomorphic mappings on Banach spaces and the approximation property, J. Funct. Anal. 21 (1976), 7-30.
[4] A. Defant and M. Maestre, Property (BB) and holomorphic functions on Fréchet-Montel spaces, Math. Proc. Cambridge Philos. Soc. 115 (1993), 305-313.
[5] S. Dineen, Complex Analysis in Locally Convex Spaces, North-Holland Math. Stud. 57, North-Holland, New York, 1981.
[6] S. Dineen, Holomorphic functions on Fréchet-Montel spaces, J. Math. Anal. Appl. 163 (1992), 581-587.
[7] S. Dineen, Holomorphic functions and the (BB)-property, Math. Scand. 74 (1994), 215-236.
[8] S. Dineen, Complex Analysis on Infinite Dimensional Spaces, to appear.
[9] P. Galindo, D. García and M. Maestre, The coincidence of $τ_0$ and $τ_ω$ for spaces of holomorphic functions on some Fréchet-Montel spaces, Proc. Roy. Irish Acad. Sect. A 91 (1991), 137-143.
[10] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955).
[11] H. Jarchow, Locally Convex Spaces, Teubner, Stuttgart, 1981.
[12] G. Köthe, Topological Vector Spaces I, Grundlehren Math. Wiss. 159, 2nd ed., Springer, New York, 1969.
[13] G. Köthe, Topological Vector Spaces II, Grundlehren Math. Wiss. 237, Springer, New York, 1979.
[14] R. A. Ryan, Applications of topological tensor products to infinite dimensional holomorphy, Ph.D. Thesis Trinity College, Dublin, 1980.
[15] J. Taskinen, Counterexamples to "Problème des topologies" of Grothendieck, Ann. Acad. Sci. Fenn. Ser. A I Math. 63 (1986), 1-25.