Let A and B be two unitary Banach algebras. We study linear mappings from A into B which preserve the polynomially convex hull of the spectrum. In particular, we give conditions under which such surjective linear mappings are Jordan morphisms.
Department of Mathematics, University of the Orange Free State, Bloemfontein, 9300 South Africa
Bibliografia
[1] B. Aupetit, Propriétés spectrales des algèbres de Banach, Lecture Notes in Math. 735, Springer, Berlin, 1979.
[2] B. Aupetit, A Primer on Spectral Theory, Springer, Berlin, 1991.
[3] I. N. Herstein, Topics in Ring Theory, University of Chicago Press, Chicago, 1969.
[4] A. A. Jafarian and A. R. Sourour, Spectrum-preserving linear maps, J. Funct. Anal. 66 (1986), 255-261.
[5] I. Kaplansky, Algebraic and Analytic Aspects of Operator Algebras, CBMS Regional Conf. Ser. in Math. 1, Amer. Math. Soc., Providence, 1970.
[6] M. Marcus and R. Purves, Linear transformations on algebras of matrices: the invariance of the elementary symmetric functions, Canad. J. Math. 11 (1959), 383-396.
[7] T. Mouton (H. du) and H. Raubenheimer, On rank one and finite elements of Banach algebras, Studia Math. 104 (1993), 211-219.
[8] C. E. Rickart, General Theory of Banach Algebras, Van Nostrand, Princeton, 1960.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-smv109i1p91bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.