The Itô integral calculus and analysis on nilpotent Lie grops are used to estimate the number of eigenvalues of the Schrödinger operator for a quantum system with a polynomial magnetic vector potential. An analogue of the Cwikel-Lieb-Rosenblum inequality is proved.
Institute of Mathematics, Polish Academy of Sciences, Wrocław, Branch, Kopernika 18, 51-617 Wrocław, Poland.
Bibliografia
[1] L. Arnold, Stochastic Differential Equations: Theory and Applications, Wiley, New York 1974.
[2] N. Bourbaki, Groupes et Algèbres de Lie, Hermann, Paris 1971.
[3] M. Cwikel, Weak type estimates for singular values and the number of bound states of Schrödinger operators, Ann. of Math. 106 (1977), 93-100.
[4] G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), 161-207.
[5] E. Lieb, The number of bound states of one-body Schrödinger operators and the Weyl problem, unpublished.
[6] K. Löwner, Über monotone Matrixfunktionen, Math. Z. 38 (1934), 177-216.
[7] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 4, Academic Press, 1978.
[8] G. W. Rosenblum, The distribution of the discrete spectrum of singular differential operators, Dokl. Akad. Nauk SSSR 202 (1972), 1012-1015 (in Russian).
[9] B. Simon, Schrödinger operators with singular magnetic vector potentials, Math. Z. 131 (1973), 361-370.
[10] B. Simon, Functional Integration and Quantum Physics, Academic Press, 1979.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-smv105i1p13bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.