Institute of Mathematics, Higher Agricultural and Pedagogical School, Orlicz-Dreszera 19/21, 08-110 Siedlce, Poland
Bibliografia
[1] A. Ehrenfeucht, Discernible elements in models of Peano arithmetic, J. Symbolic Logic 38 (1973), 291-292.
[2] H. Gaifman, A note on models and submodels of arithmetic, in: Conference in Mathematical Logic, London '70, W. Hodges (ed.), Lecture Notes in Math. 255, Springer, 1972, 128-144.
[3] H. Gaifman, Models and types of Peano's Arithmetic, Ann. Math. Logic 9 (1976), 223-306.
[4] P. Hájek and P. Pudlák, Metamathematics of First-Order Arithmetic, Perspectives in Math. Logic, Springer, 1993.
[5] W. Hodges, Model Theory, Encyclopedia Math. Appl. 42, Cambridge University Press, 1993.
[6] R. Kaye, Models of Peano Arithmetic, Oxford Logic Guides 15, Oxford University Press, 1991.
[7] R. Kaye, A Galois correspondence for countable recursively saturated models of Peano arithmetic, in: R. Kaye and D. Macpherson (eds.), Automorphisms of First Order Structures, Oxford University Press, 1994, 293-312.
[8] R. Kaye, R. Kossak and H. Kotlarski, Automorphisms of recursively saturated models of arithmetic, Ann. Pure Appl. Logic 55 (1991), 67-91.
[9] L. Kirby, Initial segments in models of Peano Arithmetic, Ph.D. Thesis, University of Manchester, 1977.
[10] R. Kossak and H. Kotlarski, Results on automorphisms of recursively saturated models of PA, Fund. Math. 129 (1988), 9-15.
[11] R. Kossak, H. Kotlarski and J. Schmerl, On maximal subgroups of the automorphism group of a countable recursively saturated models of PA, Ann. Pure Appl. Logic 65 (1993), 125-148.
[12] R. Kossak and J. Schmerl, Minimal satisfaction classes with an application to rigid models of Peano Arithmetic, Notre Dame J. Formal Logic 32 (1991), 392-398.
[13] R. Kossak and J. Schmerl, The automorphism group of an arithmetically saturated model of Peano arithmetic, J. London Math. Soc., to appear.
[14] H. Kotlarski, On elementary cuts in recursively saturated models of arithmetic, Fund. Math. 120 (1984), 205-222.
[15] H. Kotlarski, Automorphisms of countable recursively saturated models of Arithmetic: a survey, Notre Dame J. Formal Logic, submitted.
[16] H. Kotlarski, Addition to the Rosser's Theorem, J. Symbolic Logic, submitted.
[17] D. Lascar, Automorphism group of a recursively saturated model of Peano Arithmetic, in: R. Kaye and D. Macpherson (eds.), Automorphisms of First Order Structures, Oxford University Press, 1994, 281-292.
[18] C. Smoryński, The Incompleteness Theorems, in: J. Barwise (ed.), Handbook of Mathematical Logic, North-Holland, 1977, 821-865.
[19] C. Smoryński, Elementary extensions of recursively saturated models of arithmetic, Notre Dame J. Formal Logic 22 (1981), 193-203.
[20] C. Smoryński and J. Stavi, Cofinal extensions preserve recursive saturation, in: Model Theory of Algebra and Arithmetic, L. Pacholski et al. (eds.), Lecture Notes in Math. 834, Springer, 1981, 338-345.