We prove that an ultrametric space can be bi-Lipschitz embedded in $ℝ^n$ if its metric dimension in Assouad's sense is smaller than n. We also characterize ultrametric spaces up to bi-Lipschitz homeomorphism as dense subspaces of ultrametric inverse limits of certain inverse sequences of discrete spaces.
epartment of Mathematics, Penn State Altoona, Altoona, Pa 16601-3760, U.S.A.
Bibliografia
[1] M. Aschbacher, P. Baldi, E. B. Baum and R. M. Wilson, Embeddings of ultrametric spaces in finite dimensional structures, SIAM J. Algebraic Discrete Methods 8 (1987), 564-577.
[2] P. Assouad, Espaces métriques, plongements, facteurs, Thèse de doctorat d'État, Orsay, 1977.
[3] P. Assouad, Étude d'une dimension métrique liée à la possibilité de plongements dans $ℝ^n$, C. R. Acad. Sci. Paris Sér. A 288 (1979), 731-734.
[4] P. Assouad, Plongements Lipschitziens dans $ℝ^n$, Bull. Soc. Math. France 111 (1983), 429-448.
[5] A. Ben-Artzi, A. Eden, C. Foias and B. Nicolaenko, Hölder continuity for the inverse of Ma né's projection, J. Math. Anal. Appl. 178 (1993), 22-29.
[6] R. Engelking, Dimension Theory, PWN, Warszawa, and North-Holland, Amsterdam, 1978.
[7] K. Falconer, Fractal Geometry, Wiley, Chichester, 1990.
[8] J. B. Kelly, Metric inequalities and symmetric differences, in: Inequalities-II, O. Shisha (ed.), Academic Press, New York, 1970, 193-212.
[9] J. B. Kelly, Hypermetric spaces and metric transforms, in: Inequalities-III, O. Shisha (ed.), Academic Press, New York, 1972, 149-158.
[10] A. Yu. Lemin, On the stability of the property of a space being isosceles, Uspekhi Mat. Nauk 39 (5) (1984), 249-250 (in Russian); English transl.: Russian Math. Surveys 39 (5) (1984), 283-284.
[11] A. Yu. Lemin, Isometric imbedding of isosceles (non-Archimedean) spaces in Euclidean spaces, Dokl. Akad. Nauk SSSR 285 (1985), 558-562 (in Russian); English transl.: Soviet Math. Dokl. 32 (1985), 740-744.
[12] J. Luukkainen and P. Tukia, Quasisymmetric and Lipschitz approximation of embeddings, Ann. Acad. Sci. Fenn. Ser. A I Math. 6 (1981), 343-367.
[13] J. Luukkainen and J. Väisälä, Elements of Lipschitz topology, ibid. 3 (1977), 85-122.
[14] G. Michon, Les cantors réguliers, C. R. Acad. Sci. Paris Sér. I Math. 300 (1985), 673-675.
[15] H. Movahedi-Lankarani, On the inverse of Ma né's projection, Proc. Amer. Math. Soc. 116 (1992), 555-560.
[16] H. Movahedi-Lankarani, An invariant of bi-Lipschitz maps, Fund. Math. 143 (1993), 1-9.
[17] A. C. M. van Rooij, Non-Archimedean Functional Analysis, Marcel Dekker, New York, 1978.
[18] W. H. Schikhof, Ultrametric Calculus, Cambridge University Press, Cambridge, 1984.
[19] A. F. Timan, On the isometric mapping of some ultrametric spaces into $L_p$-spaces, Trudy Mat. Inst. Steklov. 134 (1975), 314-326 (in Russian); English transl.: Proc. Steklov Inst. Math. 134 (1975), 357-370.
[20] A. F. Timan and I. A. Vestfrid, Any separable ultrametric space can be isometrically imbedded in $l_2$, Funktsional. Anal. i Prilozhen. 17 (1) (1983), 85-86 (in Russian); English transl.: Functional Anal. Appl. 17 (1983), 70-71.
[21] J. H. Wells and L. R. Williams, Embeddings and Extensions in Analysis, Springer, Berlin, 1975.