In this paper we study some of the structural properties of the set of all minimal total dominating functions ($𝔉_T$) of cycles and paths and introduce the idea of function reducible graphs and function separable graphs. It is proved that a function reducible graph is a function separable graph. We shall also see how the idea of function reducibility is used to study the structure of $𝔉_T(G)$ for some classes of graphs.
Department of Mathematics and Statistics, University of Victoria, BC, Canada
Bibliografia
[1] B. Grünbaum, Convex Polytopes (Interscience Publishers, 1967).
[2] E.J. Cockayne and C.M. Mynhardt, A characterization of universal minimal total dominating functions in trees, Discrete Math. 141 (1995) 75-84, doi: 10.1016/0012-365X(93)E0192-7.
[3] E.J. Cockayne, C.M. Mynhardt and B. Yu, Universal minimal total dominating functions in graphs, Networks 24 (1994) 83-90, doi: 10.1002/net.3230240205.
[4] E.J. Cockayne, C.M. Mynhardt and B. Yu, Total dominating functions in trees: Minimality and convexity, J. Graph Theory 19 (1995) 83-92, doi: 10.1002/jgt.3190190109.
[5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., New York, 1998).
[6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs - Advanced Topics (Marcel Dekker, Inc., New York, 1998).
[7] K. Reji Kumar, Studies in Graph Theory - Dominating functions, Ph.D Thesis (Manonmaniam Sundaranar University, Tirunelveli, India, 2004).
[8] K. Reji Kumar, G. MacGillivray and R.B. Bapat, Topological properties of the set of all minimal total dominating functions of a graph, manuscript.
[9] D.B. West, Graph Theory : An introductory course (Prentice Hall, New York, 2002).