EN
The distinguishing number D(G) of a graph G is the least integer d such that G has a labeling with d colors that is not preserved by any nontrivial automorphism. The restriction to proper labelings leads to the definition of the distinguishing chromatic number $χ_D(G)$ of G.
Extending these concepts to infinite graphs we prove that $D(Q_ℵ₀) = 2$ and $χ_D(Q_ℵ₀) = 3$, where $Q_ℵ₀$ denotes the hypercube of countable dimension. We also show that $χ_D(Q₄) = 4$, thereby completing the investigation of finite hypercubes with respect to $χ_D$.
Our results extend work on finite graphs by Bogstad and Cowen on the distinguishing number and Choi, Hartke and Kaul on the distinguishing chromatic number.