EN
In this paper, we give a sufficient condition for a graph to contain vertex-disjoint stars of a given size. It is proved that if the minimum degree of the graph is at least k+t-1 and the order is at least (t+1)k + O(t²), then the graph contains k vertex-disjoint copies of a star $K_{1,t}$. The condition on the minimum degree is sharp, and there is an example showing that the term O(t²) for the number of uncovered vertices is necessary in a sense.