EN
Let 𝓟₁,...,𝓟ₙ be properties of graphs. A (𝓟₁,...,𝓟ₙ)-partition of a graph G is a partition {V₁,...,Vₙ} of V(G) such that, for each i = 1,...,n, the subgraph of G induced by $V_i$ has property $𝓟_i$. If a graph G has a unique (𝓟₁,...,𝓟ₙ)-partition we say it is uniquely (𝓟₁,...,𝓟ₙ)-partitionable. We establish best lower bounds for the order of uniquely (𝓟₁,...,𝓟ₙ)-partitionable graphs, for various choices of 𝓟₁,...,𝓟ₙ.