Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 29 | 2 | 203-213

Tytuł artykułu

Knowledge bases and automorphic equivalence of multi-models versus linear spaces and graphs

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The paper considers an algebraic notion of automorphic equivalence of models and of multi-models. It is applied to the solution of the problem of informational equivalence of knowledge bases. We show that in the case of linear subjects of knowledge the problem can be reduced to the well-known in computational group theory problems about isomorphism and conjugacy of subgroups of a general linear group.

Słowa kluczowe

Rocznik

Tom

29

Numer

2

Strony

203-213

Opis fizyczny

Daty

wydano
2009
otrzymano
2009-05-06
poprawiono
2009-05-26

Twórcy

  • Computer Science Department, Bar-Ilan University, Ramat Gan 52900, Israel
  • Computer Science Department, Bar-Ilan University, Ramat Gan 52900, Israel

Bibliografia

  • [1] J.J. Cannon and D.F. Holt, Automorphism group computation and isomorphism testing in finite groups, J. Symbolic Comput. 35 (3) (2003), 241-267.
  • [2] J.E. Humphreys, Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, 9, Springer-Verlag, New York 1972.
  • [3] M. Knyazhansky, Categorical Model of Knowledge Base and its Applications to Knowledge Bases Equivalence Verification Ph.D.Thesis, Bar Ilan University (2009) submitted.
  • [4] M. Knyazhansky and T. Plotkin, Automorphic equivalence of multi-models recognition, Armenian Journal of Mathematics, 1 (2) (2008), 10-24.
  • [5] M. Krasner, Généralisation abstraite de la théorie de Galois, Colloque Int. du CNRS (Algèbre et théorie des nombres) 24 (1949), 163-168.
  • [6] E.A. O'Brien, Isomorphism testing for p-groups, J. Symbolic Comput. 16 (3) (1993), 305-320.
  • [7] B. Plotkin, Universal Algebra, Algebraic Logic and Databases, Kluwer 1993.
  • [8] B. Plotkin, Seven Lectures in Universal Algebraic Geometry, Preprint, Arxiv math, GM/0204245 (2002) 87pp.
  • [9] B. Plotkin and T. Plotkin, Geometrical aspect of databases and knowledge bases, Algebra Universalis 46 (2001), 131-161.
  • [10] B. Plotkin and T. Plotkin, An algebraic approach to knowledge bases equivalence, Acta Applicandae Mathematicae, Dordreht, Holland 89 (2005), 109-134.
  • [11] B. Plotkin and T. Plotkin, Categories of elementary sets over algebras and categories of elementary algebraic knowledge, LNCS, Springer-Verlag, 4800 (2008), 555-570.
  • [12] C.M. Roney-Dougal, Conjugacy of subgroups of the general linear group, Experiment. Math. 13 (2) (2004), 151-163.
  • [13] C.C. Sims, Computation with Finitely Presented Groups. Cambridge University Press (1994) xiii+604 pp.
  • [14] A. Tarski, Logic, Semantics, Metamathematics, Oxford University Press, Oxford 1983. Second edition, (First edition 1956).
  • [15] M.V. Volkov, The finite basis problem for finite semigroups, Sci. Math. Jpn., 53 (1) (2001), 171-199.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1158
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.