We study semigroups generated by the restrictions of automaton extension (see, e.g., [3]) and give a characterization of automaton extensions that generate finite semigroups.
Silesian University of Technology, Institute of Mathematics, Kaszubska 23, 44-100 Gliwice, Poland
Bibliografia
[1] K. Culik, II, Construction of the Automaton Mapping, (Russian), Apl. Mat. 10 (1965), 459-468.
[2] S. Eilenberg, Automata, Languages and Machines, Volume A, Academic Press, New York 1974.
[3] V.M. Glushkov, Abstract theory of automata, (Russian), Uspehi Mat. Nauk 16 no. 5 (101), (1961), 3-62.
[4] R.I. Grigorchuk, V.V. Nekrashevich and V.I. Sushchanskii, Automata,Dynamical Systems, and Groups, Proc. Steklov Inst. Math. 231 (2000), 128-203.
[5] B. Mikolajczak et al. (eds.), Algebraic and Structural Automata Theory, Annals of Discrete Mathematics, vol. 44, North-Holland Publ. Co., Amsterdam 1991.
[6] M. Osys, Automaton extensions of mappings on the set of words defined by finite Mealy automata, Algebra Discrete Math., to appear (preprint 2005).
[7] M. Osys, Automaton extensions of transformations of free monoid over finite alphabet (Polish), Zeszyty Nauk. Politech. Śląskiej, Seria Math.-Fiz., no. 91, (2004).