An elementary proof is given for Hutchinson's duality theorem, which states that if a lattice identity λ holds in all submodule lattices of modules over a ring R with unit element then so does the dual of λ.
JATE Bolyai Institute, Aradi vértanúk tere 1, H-6720 Szeged, Hungary
Bibliografia
[1] G. Frobenius, Theorie der linearen Formen mit ganzen Coefficienten, J. Reine Angew. Math. 86 (1879), 146-208.
[2] G. Hutchinson, On classes of lattices representable by modules, Proceedings of the University of Houston Lattice Theory Conference, Univ. Houston 1973, 69-94.
[3] G. Hutchinson and G. Czédli, A test for identities satisfied in submodule lattices, Algebra Universalis 8 (1978), 269-309.
[4] A.F. Pixley, Local Mal'cev conditions, Canadian Math. Bull. 15 (1972), 559-568.
[5] R. Wille, Kongruenzklassengeometrien, Lecture Notes in Math, no. 113, Springer-Verlag, Berlin-Heidelberg-New York 1970.