EN
We study the Bishop-Phelps-Bollobás property for numerical radius (for short, BPBp-nu) of operators on ℓ₁-sums and $ℓ_{∞}$-sums of Banach spaces. More precisely, we introduce a property of Banach spaces, which we call strongly lush. We find that if X is strongly lush and X ⊕₁ Y has the weak BPBp-nu, then (X,Y) has the Bishop-Phelps-Bollobás property (BPBp). On the other hand, if Y is strongly lush and $X ⊕_{∞} Y$ has the weak BPBp-nu, then (X,Y) has the BPBp. Examples of strongly lush spaces are C(K) spaces, L₁(μ) spaces, and finite-codimensional subspaces of C[0,1].