EN
This paper deals with Besov spaces of logarithmic smoothness $B_{p,r}^{0,b}$ formed by periodic functions. We study embeddings of $B_{p,r}^{0,b}$ into Lorentz-Zygmund spaces $L_{p,q}(log L)_{β}$. Our techniques rely on the approximation structure of $B_{p,r}^{0,b}$, Nikol'skiĭ type inequalities, extrapolation properties of $L_{p,q}(log L)_{β}$ and interpolation.