EN
We prove that on $ℝ^{N}$, there is no n-supercyclic operator with 1 ≤ n < ⌊(N + 1)/2⌋, i.e. if $ℝ^{N}$ has an n-dimensional subspace whose orbit under $T ∈ 𝓛(ℝ^{N})$ is dense in $ℝ^{N}$, then n is greater than ⌊(N + 1)/2⌋. Moreover, this value is optimal. We then consider the case of strongly n-supercyclic operators. An operator $T ∈ 𝓛(ℝ^{N})$ is strongly n-supercyclic if $ℝ^{N}$ has an n-dimensional subspace whose orbit under T is dense in $ℙₙ(ℝ^{N})$, the nth Grassmannian. We prove that strong n-supercyclicity does not occur non-trivially in finite dimensions.