EN
We introduce a new class of Banach spaces, called generalized-lush spaces (GL-spaces for short), which contains almost-CL-spaces, separable lush spaces (in particular, separable C-rich subspaces of C(K)), and even the two-dimensional space with hexagonal norm. We find that the space C(K,E) of vector-valued continuous functions is a GL-space whenever E is, and show that the set of GL-spaces is stable under c₀-, l₁- and $l_{∞}$-sums. As an application, we prove that the Mazur-Ulam property holds for a larger class of Banach spaces, called local-GL-spaces, including all lush spaces and GL-spaces. Furthermore, we generalize the stability properties of GL-spaces to local-GL-spaces. From this, we can obtain many examples of Banach spaces having the Mazur-Ulam property.