Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2013 | 218 | 2 | 95-118

Tytuł artykułu

Preconditioners and Korovkin-type theorems for infinite-dimensional bounded linear operators via completely positive maps

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The classical as well as noncommutative Korovkin-type theorems deal with the convergence of positive linear maps with respect to different modes of convergence, like norm or weak operator convergence etc. In this article, new versions of Korovkin-type theorems are proved using the notions of convergence induced by strong, weak and uniform eigenvalue clustering of matrix sequences with growing order. Such modes of convergence were originally considered for the special case of Toeplitz matrices and indeed the Korovkin-type approach, in the setting of preconditioning large linear systems with Toeplitz structure, is well known. Here we extend this finite-dimensional approach to the infinite-dimensional context of operators acting on separable Hilbert spaces. The asymptotics of these preconditioners are evaluated and analyzed using the concept of completely positive maps. It is observed that any two limit points, under Kadison's BW-topology, of the same sequence of preconditioners are equal modulo compact operators. Moreover, this indicates the role of preconditioners in the spectral approximation of bounded self-adjoint operators.

Słowa kluczowe

Twórcy

autor
  • Department of Mathematics, "CUSAT", Cochin, India
  • Department of Mathematics, "CUSAT", Cochin, India
  • Department of Science and High Technology, Università Insubria, Como Campus, via Valleggio 11, 22100 Como, Italy

Bibliografia

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-doi-10_4064-sm218-2-1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.