Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2010 | 200 | 2 | 131-148

Tytuł artykułu

Hilbert C*-modules from group actions: beyond the finite orbits case

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Continuous actions of topological groups on compact Hausdorff spaces X are investigated which induce almost periodic functions in the corresponding commutative C*-algebra. The unique invariant mean on the group resulting from averaging allows one to derive a C*-valued inner product and a Hilbert C*-module which serve as an environment to describe characteristics of the group action. For Lyapunov stable actions the derived invariant mean $M(ϕ_{x})$ is continuous on X for any ϕ ∈ C(X), and the induced C*-valued inner product corresponds to a conditional expectation from C(X) onto the fixed-point algebra of the action defined by averaging on orbits. In the case of self-duality of the Hilbert C*-module all orbits are shown to have the same cardinality. Stable actions on compact metric spaces give rise to C*-reflexive Hilbert C*-modules. The same is true if the cardinality of finite orbits is uniformly bounded and the number of closures of infinite orbits is finite. A number of examples illustrate typical situations appearing beyond the classified cases.

Słowa kluczowe

Twórcy

  • FB IMN, HTWK Leipzig, Postfach 301166, D-04251 Leipzig, Germany
  • Department of Mechanics and Mathematics, Moscow State University, 119991 GSP-1 Moscow, Russia
  • Harbin Institute of Technology, Harbin, P.R. China
  • Department of Mechanics and Mathematics, Moscow State University, 119991 GSP-1 Moscow, Russia

Bibliografia

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-doi-10_4064-sm200-2-2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.