EN
A remarkable theorem of Mazur and Orlicz which generalizes the Hahn-Banach theorem is here put in a convenient form through an equality which will be referred to as the Mazur-Orlicz equality. Applications of the Mazur-Orlicz equality to lower barycenters for means, separation principles, Lax-Milgram lemma in reflexive Banach spaces, and monotone variational inequalities are provided.