EN
We show that, given an n-dimensional normed space X, a sequence of $N = (8/ε)^{2n}$ independent random vectors $(X_{i})_{i=1}^{N}$, uniformly distributed in the unit ball of X*, with high probability forms an ε-net for this unit ball. Thus the random linear map $Γ: ℝ → ℝ^{N}$ defined by $Γx = (⟨x,X_{i}⟩)_{i=1}^{N}$ embeds X in $ℓ^{N}_{∞}$ with at most 1 + ε norm distortion. In the case X = ℓ₂ⁿ we obtain a random 1+ε-embedding into $ℓ_{∞}^{N}$ with asymptotically best possible relation between N, n, and ε.