EN
Let 𝕋ⁿ denote the usual n-torus and let $S̃_{u}^{δ}(f)$, u > 0, denote the Bochner-Riesz means of order δ > 0 of the Fourier expansion of f ∈ L¹(𝕋ⁿ). The main result of this paper states that for f ∈ H¹(𝕋ⁿ) and the critical index α: = (n-1)/2,
$lim_{R→∞} 1/log R ∫_{0}^{R} (||S̃^{α}_{u}(f) - f||_{H¹(𝕋ⁿ)})/(u + 1) du = 0$.