EN
Let (X,||·||) be a separable real Banach space. Let f be a real-valued strongly α(·)-paraconvex function defined on an open convex subset Ω ⊂ X, i.e. such that
$f(tx + (1-t)y) ≤ tf(x) + (1-t)f(y) + min[t,(1-t)]α(||x-y||)$.
Then there is a dense $G_{δ}$-set $A_{G} ⊂ Ω$ such that f is Gateaux differentiable at every point of $A_{G}$.