Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2005 | 166 | 3 | 243-261

Tytuł artykułu

On boundary behaviour of the Bergman projection on pseudoconvex domains

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
It is shown that on strongly pseudoconvex domains the Bergman projection maps a space $Lv_{k}$ of functions growing near the boundary like some power of the Bergman distance from a fixed point into a space of functions which can be estimated by the consecutive power of the Bergman distance. This property has a local character.
Let Ω be a bounded, pseudoconvex set with C³ boundary. We show that if the Bergman projection is continuous on a space $E ⊃ L^{∞}(Ω)$ defined by weighted-sup seminorms and equipped with the topology given by these seminorms, then E must contain the spaces $Lv_{k}$ for each natural k. As a result, in the case of strongly pseudoconvex domains the inductive limit of this sequence of spaces is the smallest extension of $L^{∞}$ in the class of spaces defined by weighted-sup seminorms on which the Bergman projection is continuous. This is a generalization of the results of J. Taskinen in the case of the unit disc as well as of the previous research of the author concerning the unit ball.

Słowa kluczowe

Twórcy

autor
  • Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614 Poznań, Poland

Bibliografia

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-doi-10_4064-sm166-3-3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.