Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2003 | 159 | 3 | 373-390

Tytuł artykułu

Interpolation theorem for the p-harmonic transform

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
We establish an interpolation theorem for a class of nonlinear operators in the Lebesgue spaces $ℒ^{s}(ℝⁿ)$ arising naturally in the study of elliptic PDEs. The prototype of those PDEs is the second order p-harmonic equation $div|∇u|^{p-2∇} u = div 𝔣$. In this example the p-harmonic transform is essentially inverse to $div(|∇|^{p-2}∇)$. To every vector field $𝔣 ∈ ℒ^{q}(ℝⁿ,ℝⁿ)$ our operator $ℋ_{p}$ assigns the gradient of the solution, $ℋ_{p}𝔣 = ∇u ∈ ℒ^{p}(ℝⁿ,ℝⁿ)$. The core of the matter is that we go beyond the natural domain of definition of this operator. Because of nonlinearity our arguments require substantial innovations as compared with the classical interpolation theory of Riesz, Thorin and Marcinkiewicz. The subject is largely motivated by recent developments in geometric function theory.

Słowa kluczowe

Twórcy

  • Dipartimento di Matematica, e Applicazioni "R. Caccioppoli", Complesso Universitario Monte S. Angelo, 80126, Napoli, Italy
  • Department of Mathematics, Syracuse University, Syracuse, NY 13244, U.S.A.

Bibliografia

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-doi-10_4064-sm159-3-3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.