Pe艂notekstowe zasoby PLDML oraz innych baz dziedzinowych s膮 ju偶 dost臋pne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wynik贸w

Czasopismo

2003 | 158 | 3 | 287-301

Tytu艂 artyku艂u

Algebraic isomorphisms and Jordan derivations of 饾挜-subspace lattice algebras

Tre艣膰 / Zawarto艣膰

Warianty tytu艂u

J臋zyki publikacji

EN

Abstrakty

EN
It is shown that every algebraic isomorphism between standard subalgebras of 饾挜-subspace lattice algebras is quasi-spatial and every Jordan derivation of standard subalgebras of 饾挜-subspace lattice algebras is an additive derivation. Also, it is proved that every finite rank operator in a 饾挜-subspace lattice algebra can be written as a finite sum of rank one operators each belonging to that algebra. As an additional result, a multiplicative bijection of a 饾挜-subspace lattice algebra onto an arbitrary ring is proved to be automatically additive. Those results can be applied to atomic Boolean subspace lattice algebras and pentagon subspace lattice algebras.

S艂owa kluczowe

Tw贸rcy

autor
  • Department of Mathematics, Suzhou University, Suzhou 215006, P.R. China
autor
  • Department of Mathematics, Nanjing University, Nanjing 210093, P.R. China

Bibliografia

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-doi-10_4064-sm158-3-7
JavaScript jest wy艂膮czony w Twojej przegl膮darce internetowej. W艂膮cz go, a nast臋pnie od艣wie偶 stron臋, aby m贸c w pe艂ni z niej korzysta膰.