Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2003 | 155 | 2 | 145-152

Tytuł artykułu

The "Full Clarkson-Erdős-Schwartz Theorem" on the closure of non-dense Müntz spaces

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Denote by span{f₁,f₂,...} the collection of all finite linear combinations of the functions f₁,f₂,... over ℝ. The principal result of the paper is the following.
Theorem (Full Clarkson-Erdős-Schwartz Theorem). Suppose $(λ_{j})_{j=1}^{∞}$ is a sequence of distinct positive numbers. Then $span{1,x^{λ₁},x^{λ₂},...}$ is dense in C[0,1] if and only if
$∑^{∞}_{j=1} (λ_{j})/(λ_{j}²+1) = ∞$.
Moreover, if
$∑_{j=1}^{∞} (λ_{j})/(λ_{j}²+1) < ∞$,
then every function from the C[0,1] closure of $span{1,x^{λ₁},x^{λ₂},...}$ can be represented as an analytic function on {z ∈ ℂ ∖ (-∞, 0]: |z| < 1} restricted to (0,1).
This result improves an earlier result by P. Borwein and Erdélyi stating that if
$∑_{j=1}^{∞} (λ_{j})/(λ_{j}²+1) < ∞$,
then every function from the C[0,1] closure of $span{1,x^{λ₁},x^{λ₂},...}$ is in $C^{∞}(0,1)$. Our result may also be viewed as an improvement, extension, or completion of earlier results by Müntz, Szász, Clarkson, Erdős, L. Schwartz, P. Borwein, Erdélyi, W. B. Johnson, and Operstein.

Słowa kluczowe

Twórcy

  • Department of Mathematics, Texas A&M University, College Station, TX 77843, U.S.A.

Bibliografia

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-doi-10_4064-sm155-2-4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.