EN
Let ${β(n)}^{∞}_{n=0}$ be a sequence of positive numbers and 1 ≤ p < ∞. We consider the space $ℓ^{p}(β)$ of all power series $f(z) = ∑^{∞}_{n=0} f̂(n)zⁿ$ such that $∑_{n=0}^{∞} |f̂(n)|^{p}|β(n)|^{p} < ∞$. We give some sufficient conditions for the multiplication operator, $M_{z}$, to be unicellular on the Banach space $ℓ^{p}(β)$. This generalizes the main results obtained by Lu Fang [1].