EN
It is known that Gabor expansions do not converge unconditionally in $L^{p}$ and that $L^{p}$ cannot be characterized in terms of the magnitudes of Gabor coefficients. By using a combination of Littlewood-Paley and Gabor theory, we show that $L^{p}$ can nevertheless be characterized in terms of Gabor expansions, and that the partial sums of Gabor expansions converge in $L^{p}$-norm.