EN
A structure $𝓐 = (A;E_{i})_{i∈n}$ where each $E_{i}$ is an equivalence relation on A is called an n-grid if any two equivalence classes coming from distinct $E_{i}$'s intersect in a finite set. A function χ: A → n is an acceptable coloring if for all i ∈ n, the $χ^{-1}(i)$ intersects each $E_{i}$-equivalence class in a finite set. If B is a set, then the n-cube Bⁿ may be seen as an n-grid, where the equivalence classes of $E_{i}$ are the lines parallel to the ith coordinate axis. We use elementary submodels of the universe to characterize those n-grids which admit an acceptable coloring. As an application we show that if an n-grid 𝓐 does not admit an acceptable coloring, then every finite n-cube is embeddable in 𝓐.