Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 215 | 3 | 233-299

Tytuł artykułu

Dualization in algebraic K-theory and the invariant e¹ of quadratic forms over schemes

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In the classical Witt theory over a field F, the study of quadratic forms begins with two simple invariants: the dimension of a form modulo 2, called the dimension index and denoted e⁰: W(F) → ℤ/2, and the discriminant e¹ with values in k₁(F) = F*/F*², which behaves well on the fundamental ideal I(F)= ker(e⁰).
Here a more sophisticated situation is considered, of quadratic forms over a scheme and, more generally, over an exact category with duality. Our purposes are:
∙ to establish a theory of the invariant e¹ in this generality;
∙ to provide computations involving this invariant and show its usefulness.
We define a relative version of e¹ for pairs of quadratic forms with the same value of e⁰. This is first done in terms of loops in some bisimplicial set whose fundamental group is the K₁ of the underlying exact category, and next translated into the language of 4-term double exact sequences, which allows us to carry out actual computations. An unexpected difficulty is that the value of the relative e¹ need not vanish even if both forms are metabolic. To make the invariant well defined on the Witt classes, we study the subgroup H generated by the values of e¹ on the pairs of metabolic forms and define the codomain for e¹ by factoring out this subgroup from some obvious subquotient of K₁. This proves to be a correct definition of the small k₁ for categories; it agrees with Milnor's usual k₁ in the case of fields.
Next we provide applications of this new invariant by computing it for some pairs of forms over the projective line and for some forms over conics.

Słowa kluczowe

Rocznik

Tom

215

Numer

3

Strony

233-299

Opis fizyczny

Daty

wydano
2011

Twórcy

  • Mieszka I 15/97, 40-877 Katowice, Poland

Bibliografia

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-doi-10_4064-fm215-3-3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.