Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 202 | 2 | 125-146

Tytuł artykułu

Embedding properties of endomorphism semigroups

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Denote by PSelf Ω (resp., Self Ω) the partial (resp., full) transformation monoid over a set Ω, and by Sub V (resp., End V) the collection of all subspaces (resp., endomorphisms) of a vector space V. We prove various results that imply the following:
(1) If card Ω ≥ 2, then Self Ω has a semigroup embedding into the dual of Self Γ iff $card Γ ≥ 2^{card Ω}$. In particular, if Ω has at least two elements, then there exists no semigroup embedding from Self Ω into the dual of PSelf Ω.
(2) If V is infinite-dimensional, then there is no embedding from (Sub V,+) into (Sub V,∩) and no embedding from (End V,∘) into its dual semigroup.
(3) Let F be an algebra freely generated by an infinite subset Ω. If F has fewer than $2^{card Ω}$ operations, then End F has no semigroup embedding into its dual. The bound $2^{card Ω}$ is optimal.
(4) Let F be a free left module over a left ℵ₁-noetherian ring (i.e., a ring without strictly increasing chains, of length ℵ₁, of left ideals). Then End F has no semigroup embedding into its dual.
(1) and (2) above solve questions proposed by G. M. Bergman and B. M. Schein. We also formalize our results in the setting of algebras endowed with a notion of independence (in particular, independence algebras).

Słowa kluczowe

Twórcy

  • Universidade Aberta, Rua da Escola Politécnica, 147, 1269-001 Lisboa, Portugal
  • Centro de Álgebra da Universidade de Lisboa, Av. Gama Pinto, 2, 1649-003 Lisboa, Portugal
  • LMNO, CNRS UMR 6139, Université de Caen, Campus 2, Département de Mathématiques, BP 5186, 14032 Caen Cedex, France

Bibliografia

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-doi-10_4064-fm202-2-2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.