EN
Let F:ℳ f→ 𝓥ℬ be a vector bundle functor. First we classify all natural operators $T_{|ℳ fₙ} ⇝ T^{(0,0)} (F_{|ℳ fₙ})*$ transforming vector fields to functions on the dual bundle functor $(F_{|ℳ fₙ})*$. Next, we study the natural operators $T*_{|ℳ fₙ} ⇝ T*(F_{|ℳ fₙ})*$ lifting 1-forms to $(F_{|ℳ fₙ})*$. As an application we classify the natural operators $T*_{|ℳ fₙ} ⇝ T*(F_{|ℳ fₙ})*$ for some well known vector bundle functors F.