EN
A subalgebra B of the direct product $∏_{i∈ I}A_i$ of Boolean algebras is finitely closed if it contains along with any element f any other member of the product differing at most at finitely many places from f. Given such a B, let B* be the set of all members of B which are nonzero at each coordinate. The generalized free product corresponding to B is the subalgebra of the regular open algebra with the poset topology on B* generated by the natural basic open sets. Properties of this product are developed. The full regular open algebra is also treated.