EN
A variety 𝕍 of algebras of a finite type is almost ff-universal if there is a finiteness-preserving faithful functor F: 𝔾 → 𝕍 from the category 𝔾 of all graphs and their compatible maps such that Fγ is nonconstant for every γ and every nonconstant homomorphism h: FG → FG' has the form h = Fγ for some γ: G → G'. A variety 𝕍 is Q-universal if its lattice of subquasivarieties has the lattice of subquasivarieties of any quasivariety of algebras of a finite type as the quotient of its sublattice. For a variety 𝕍 of modular 0-lattices it is shown that 𝕍 is almost ff-universal if and only if 𝕍 is Q-universal, and that this is also equivalent to the non-distributivity of 𝕍.