Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 96 | 1 | 215-236

Tytuł artykułu

Explicit construction of a unitary double product integral

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In analogy with earlier work on the forward-backward case, we consider an explicit construction of the forward-forward double stochastic product integral $∏^{→→}(1 + dr)$ with generator $dr = λ(dA^† ⊗ dA - dA ⊗ dA^†)$. The method of construction is to approximate the product integral by a discrete double product
$∏^{→→}_{(j,k)∈ℕ_m×ℕₙ} Γ(R_{m,n}^{(j,k)}) = Γ(∏^{→→}_{(j,k)∈ℕ_m×ℕₙ} (R_{m,n}^{(j,k)}))$
of second quantised rotations $R_{m,n}^{(j,k)}$ in different planes using the embedding of $ℂ^m ⊕ ℂⁿ$ into L²(ℝ) ⊕ L²(ℝ) in which the standard orthonormal bases of $ℂ^m$ and ℂⁿ are mapped to the orthonormal sets consisting of normalised indicator functions of equipartitions of finite subintervals of ℝ. The limits as m,n ⟶ ∞ of such double products of rotations are constructed heuristically by a new method, and are shown rigorously to be unitary operators. Finally it is shown that the second quantisations of these unitary operators do indeed satisfy the quantum stochastic differential equations defining the double product integral.

Słowa kluczowe

Rocznik

Tom

96

Numer

1

Strony

215-236

Opis fizyczny

Daty

wydano
2011

Twórcy

autor
  • Mathematics Department, Loughborough University, Loughborough, Leicestershire LE11 3TU, Great Britain
autor
  • Mathematics Department, Loughborough University, Loughborough, Leicestershire LE11 3TU, Great Britain

Bibliografia

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-doi-10_4064-bc96-0-14
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.