Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 93 | 1 | 69-82

Tytuł artykułu

Geometry of noncommutative algebras

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
There has been several attempts to generalize commutative algebraic geometry to the noncommutative situation. Localizations with good properties rarely exist for noncommutative algebras, and this makes a direct generalization difficult. Our point of view, following Laudal, is that the points of the noncommutative geometry should be represented as simple modules, and that noncommutative deformations should be used to obtain a suitable localization in the noncommutative situation.
Let A be an algebra over an algebraically closed field k. If A is commutative and finitely generated over k, then any simple A-module has the form M = A/𝔪, the residue field, for a maximal ideal 𝔪 ⊆ A, and the commutative deformation functor $𝖣𝖾𝖿_{M}$ has formal moduli $Â_{𝔪}$. In the general case, we may replace the A-module A/𝔪 with the simple A-module M, and use the formal moduli of the commutative deformation functor $𝖣𝖾𝖿_{M}$ as a replacement for the complete local ring $Â_{𝔪}$. We recall the construction of the commutative scheme simp(A), with points in bijective correspondence with the simple A-modules of finite dimension over k, and with complete local ring at a point M isomorphic to the formal moduli of the corresponding simple module M.
The scheme simp(A) has good properties, in particular when there are no infinitesimal relations between different points, i.e. when $Ext¹_{A}(M,M') = 0$ for all pairs of non-isomorphic simple A-modules M,M'. It does not, however, characterize A. We use noncommutative deformation theory to define localizations, in general.
We consider the quantum plane, given by A = k⟨x,y⟩/(xy-qyx), as an example. This is an Artin-Schelter algebra of dimension two.

Słowa kluczowe

Twórcy

  • BI Norwegian Business School, N-0442 Oslo, Norway
  • Buskerud University College, P.O. Box 235, N-3603 Kongsberg, Norway

Bibliografia

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-doi-10_4064-bc93-0-6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.